

ELSEVIER

International Journal of Solids and Structures 41 (2004) 5447–5448

INTERNATIONAL JOURNAL OF
SOLIDS and
STRUCTURES

www.elsevier.com/locate/ijsolstr

Closure on “Analysis of an isotropic finite wedge under antiplane deformation”

S.J. Fariborz ¹

Department of Mechanical Engineering, Amirkabir University of Technology, Hafez Ave., 424, Tehran 158754413, Iran

Available online 14 May 2004

The following errors are detected in the article:

1. In the first of Eq. (19), $(-1)^k$ should read $(-1)^{k+1}$.
2. The domains of first and second of (42) should be interchanged.
3. Eqs. (43) should read

$$\begin{aligned}\tau_{rz}(r, \theta) &= \frac{P}{h\alpha} \sum_{k=0}^{\infty} (-1)^k \left[1 - \left(\frac{h}{a} \right)^{\frac{(2k+1)\pi}{\alpha}} \right] \left(\frac{r}{h} \right)^{\frac{(2k+1)\pi}{2\alpha}-1} \sin \left(\frac{(2k+1)\pi\theta}{2\alpha} \right) \quad r \leq h \\ \tau_{\theta z}(r, \theta) &= \frac{P}{h\alpha} \sum_{k=0}^{\infty} (-1)^k \left[1 - \left(\frac{h}{a} \right)^{\frac{(2k+1)\pi}{\alpha}} \right] \left(\frac{r}{h} \right)^{\frac{(2k+1)\pi}{2\alpha}-1} \cos \left(\frac{(2k+1)\pi\theta}{2\alpha} \right) \quad r \leq h \\ \tau_{rz}(r, \theta) &= \frac{P}{h\alpha} \sum_{k=0}^{\infty} (-1)^{k+1} \left[1 + \left(\frac{r}{a} \right)^{\frac{(2k+1)\pi}{\alpha}} \right] \left(\frac{h}{r} \right)^{\frac{(2k+1)\pi}{2\alpha}+1} \sin \left(\frac{(2k+1)\pi\theta}{2\alpha} \right) \quad r \geq h \\ \tau_{\theta z}(r, \theta) &= \frac{P}{h\alpha} \sum_{k=0}^{\infty} (-1)^k \left[1 - \left(\frac{r}{a} \right)^{\frac{(2k+1)\pi}{\alpha}} \right] \left(\frac{h}{r} \right)^{\frac{(2k+1)\pi}{2\alpha}+1} \cos \left(\frac{(2k+1)\pi\theta}{2\alpha} \right) \quad r \geq h\end{aligned}\tag{43}$$

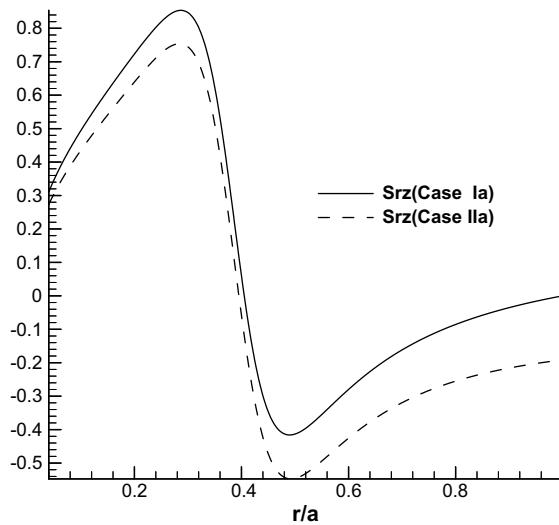
Having made the above changes cases (Ia), (Ib), (IIa), and (IIb) would be absolutely correct. In cases (Ia) and (IIa) the stress component τ_{rz} becomes discontinuous by setting $r = h$. However, if we take the limit as $r \rightarrow h$ we obtain continuous results. The plot of $S_{rz} = \tau_{rz} h\alpha / P$ verses r/a , where, $h/a = 0.4$, $\alpha = \pi/3$, $\theta = \pi/4$, for both cases utilizing 2000 terms of the series is provided.

The solution to cases (Ic) and (IIc) are erroneous. The trick is to choose the x -axis in the wedge such that not to coincide with the boundary of the wedge and carry out the analysis outlined in Kargarnovin et al.

E-mail address: sjfariborz@yahoo.com (S.J. Fariborz).

¹ Tel.: +98-21-64543460; fax: +98-21-6419736.

(1997). Again $\tau_{rz}(h_1, \theta)$ and $\tau_{rz}(h_2, \theta)$ may be obtain by taking the limits as $r \rightarrow (h_1, h_2)$. This makes most of the calculations of Chue and Liu redundant. It is noteworthy to mention that a more general form of the problem is treated by Kargarnovin and Fariborz (2000).



References

Kargarnovin, M.H., Shahani, A.R., Fariborz, S.J., 1997. Analysis of an isotropic finite wedge under antiplane deformation. *International Journal of Solids and Structures* 34 (1), 113–128.
 Kargarnovin, M.H., Fariborz, S.J., 2000. Analysis of a dissimilar finite wedge under antiplane deformation. *Mechanics Research Communications* 27 (1), 109–116.